Paper 2 Option A

		mm	×
			nymati
aper	2 Option A		
urther	Pure Mathematics 1 Mark Scheme (Section A)		
Questio	n Scheme	Marks	AOs
1(a)	$\sec x - \tan x = \frac{1}{\frac{1-t^2}{1+t^2}} - \frac{2t}{1-t^2}$	M1	2.1
	$= \frac{1+t^2}{1-t^2} - \frac{2t}{1-t^2} = \frac{1-2t+t^2}{1-t^2}$	M1	1.1b
	$=\frac{(1-t)^2}{(1-t)(1+t)} = \frac{1-t}{1+t} *$	A1*	2.1
		(3)	
(b)	$\frac{1-\sin x}{1+\sin x} = \frac{1-\frac{2t}{1+t^2}}{1+\frac{2t}{1+t^2}}$	M1	1.1a
	$= \frac{1+t^2-2t}{1+t^2+2t}$	M1	1.1b
	$= \frac{(1-t)^2}{(1+t)^2} = \left(\frac{1-t}{1+t}\right)^2 = (\sec x - \tan x)^2 *$	A1*	2.1
		(3)	
		(6 r	narks)
Notes:			
(a) M1: U	ses sec $x = \frac{1}{\cos x}$ and the <i>t</i> -substitutions for both $\cos x$ and $\tan x$ to obtain	in an express	sion
in M1: So A1*: Fa ac	terms of <i>t</i> orts out the sec <i>x</i> term, and puts over a common denominator of $1 - t^2$ actorises both numerator and denominator (must be seen) and cancels the whieve the answer	the $(1+t)$ term	m to
(b) M1: U M1: M A1*: Fa	ses the <i>t</i> -substitution for sin x in both numerator and denominator sultiples through by $1 + t^2$ in numerator and denominator actorises both numerator and denominator and makes the connection with there the given result	th part (a) to)

			mm	my my
			_	nathsc
Ques	tion	Scheme	Marks	AOs
2		£300 purchased one hour after opening $\Rightarrow V_0 = 3$ and $t_0 = 1$; half an hour after purchase $\Rightarrow t_2 = 1.5$, so step <i>h</i> required is 0.25	B1	3.3
		$t_0 = 1, V_0 = 3, \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_0 \approx \frac{3^2 - 1}{1^2 + 3} = 2$	M1	3.4
		$V_1 \approx V_0 + h \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_0 = 3 + 0.25 \times 2 = \dots$	M1	1.1b
		= 3.5	A1ft	1.1b
		$\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_{1} \approx \frac{3.5^{2} - 1.25}{1.25^{2} + 1.25 \times 3.5} \left(=\frac{176}{95}\right)$	M1	1.1b
		$V_2 \approx V_1 + h \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_1 = 3.5 + 0.25 \times \frac{176}{95} = 3.963, \text{ so £396}$	A1	3.2a
		(nearest £)		
			(0) (6 n	narks)
Notes	;:		(01	in Roj
B1:	Iden	tifies the correct initial conditions and requirement for h		
M1:	Uses	s the model to evaluate $\frac{\mathrm{d}V}{\mathrm{d}t}$ at t_0 , using their t_0 and V_0		
M1: A1ft:	Appl 3.5 c	lies the approximation formula with their values or exact equivalent. Follow through their step value		
M1:	Atte	mpt to find $\left(\frac{dV}{dt}\right)_1$ with their 3.5		
A1:	App	lies the approximation and interprets the result to give £396		

		hun	
			Mymath
uesti	on Scheme	Marks	AOs
3	$\frac{1}{x} < \frac{x}{x+2}$		
	$\frac{(x+2)-x^2}{x(x+2)} < 0 \text{ or } x(x+2)^2 - x^3(x+2) < 0$	M1	2.1
	$\frac{x^2 - x - 2}{x(x+2)} > 0 \Longrightarrow \frac{(x-2)(x+1)}{x(x+2)} > 0 \text{ or } x(x+2)(2-x)(x+1) < 0$	M1	1.1b
	At least two correct critical values from $-2, -1, 0, 2$	A1	1.1b
	All four correct critical values $-2, -1, 0, 2$	A1	1.1b
	$ \{x \in \mathbb{R} : x < -2\} \cup \{x \in \mathbb{R} : -1 < x < 0\} \cup \{x \in \mathbb{R} : x > 2\} $	M1 A1	2.2a 2.5
		(6)	
		(6 n	narks)
Notes:			
M1:	Gathers terms on one side and puts over common denominator, or multip	ly by $x^2(x+$	$(2)^{2}$
M1:	and then gather terms on one side Factorise numerator or find roots of numerator or factorise resulting in ec factors	uation into 4	4
A1:	At least 2 correct critical values found		
A1: M1:	Exactly 4 correct critical values Deduces that the 2 "outsides" and the "middle interval" are required. May number line or any other means	y be by sketc	ch,

A1: Exactly 3 correct intervals, accept equivalent set notations, but must be given as a set e.g. accept $\mathbb{R} - ([-2, -1] \cup [0, 2])$ or $\{x \in \mathbb{R} : x < -2 \text{ or } -1 < x < 0 \text{ or } x > 2\}$

	nun.	nymath
Question Scheme	Marks	AOs
4(a) Identifies glued face is triangle <i>ABC</i> and attempts to find the area, e.g. evidences by use of $\frac{1}{2} \mathbf{AB} \times \mathbf{AC} $	M1	3.1a
$\frac{1}{2} \mathbf{A}\mathbf{B} \times \mathbf{A}\mathbf{C} = \frac{1}{2} (-2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) \times (-\mathbf{i} + \mathbf{j} + 2\mathbf{k}) $	M1	1.1b
$=\frac{1}{2}\left 5\mathbf{i}+3\mathbf{j}+\mathbf{k}\right $	M1	1.1b
$=\frac{1}{2}\sqrt{35}(m^2)$	A1	1.1b
	(4)	
Alternative	l	
Identifies glued face is triangle <i>ABC</i> and attempts to find the area, e.g. evidences by use of $\frac{1}{2}\sqrt{ \mathbf{AB} ^2 \mathbf{AC} ^2 - (\mathbf{AB.AC})^2}$	M1	3.1a
$ \mathbf{AB} ^2 = 4 + 9 + 1 = 14, \mathbf{AC} ^2 = 1 + 1 + 4 = 6$ and $\mathbf{AB.AC} = 2 + 3 + 2 = 7$	M1	1.1b
So area of glue is = $\frac{1}{2}\sqrt{(14')(6') - (7')^2}$	M1	1.1b
$=\frac{1}{2}\sqrt{35} (m^2)$	A1	1.1b
	(4)	
(b) Volume of parallelepiped taken up by concrete is e.g. $\frac{1}{6} (\mathbf{OC}.(\mathbf{OA} \times \mathbf{OB}))$	M1	3.1a
$= \frac{1}{6} (\mathbf{i} + \mathbf{j} + 2\mathbf{k}) . (2\mathbf{i} \times (3\mathbf{j} + \mathbf{k}))$	M1	1.1b
$=\frac{10}{6}=\frac{5}{3}$	A1	1.1b
Volume of parallelepiped is 6 × volume of tetrahedron (= 10), so volume of glass is difference between these, viz. $10 - \frac{5}{3} =$	M1	3.1a
Volume of glass = $\frac{25}{3}$ (m ³)	A1	1.1b
	(5)	

		4	m
			'nyma
Questi	on Scheme	Marks	AOs
	4(b) Alternative	1	
	$-\mathbf{j}+3\mathbf{k}$ is perpendicular to both $\mathbf{OA} = 2\mathbf{i}$ and $\mathbf{OB} = 3\mathbf{j}+\mathbf{k}$	M1	3.1a
	Area $AOB = \frac{1}{2} \times \mathbf{OA} \times \mathbf{OB} = \frac{1}{2} \times 2 \times \sqrt{10} = \sqrt{10}$	A1	1.1b
	$\mathbf{i} + \mathbf{j} + 2\mathbf{k} - p(-\mathbf{j} + 3\mathbf{k}) = \mu(2\mathbf{i}) + \lambda(3\mathbf{j} + \mathbf{k}) \Longrightarrow p = \frac{1}{2}$		
	and so height of tetrahedron is	M1	3.1a
	$h = \frac{1}{2} \left -\mathbf{j} + \mathbf{3k} \right = \frac{1}{2} \sqrt{10}$		
	Volume of glass is $V = 5 \times$ Volume of tetrahedron		
	$= 5 \times \frac{1}{3} \sqrt{10} \times \frac{1}{2} \sqrt{10}$	M1	1.1b
	$=\frac{25}{3}\left(\mathrm{m}^{3}\right)$	A1	1.1b
		(5)	
(c)	The glued surfaces may distort the shapes / reduce the volume of		
	Measurements in m may not be accurate	B1	3.2b
	The surface of the concrete tetrahedron may not be smooth		
	Pockets of air may form when the concrete is being poured		
		(1)	<u> </u>
		(10	marks)
ccept i	use of column vectors throughout		
a) M1: S	Shows an understanding of what is required via an attempt at finding the	e area of tri	iangle
M1: A M1: H a	Any correct method for the triangle area is fine Finds AB and AC or any other appropriate pair of vectors to use in the nd attempts to use them	vector pro	duct
A1: (Correct procedure for the vector product with at least 1 correct term $\frac{1}{2}\sqrt{2}$	$\overline{35}$ or exac	et
e	quivalent		
(a) A A11: H	Alternative Finds two appropriate sides and attempts the scalar product and magnitu	des of two	of the
M1: M M1: (May use different sides to those shown Correct full method to find the area of the triangle using their two sides		
A1:	$\frac{1}{2}\sqrt{35}$ or exact equivalent		

	mm
	· Myma
Ques	tion 4 notes continued:
(b)	
M1: M1:	Attempts volume of concrete by finding volume of tetrahedron with appropriate method Uses the formula with correct set of vectors substituted (may not be the ones shown) and vector product attempted
A1:	Correct value for the volume of concrete
M1:	Attempt to find total volume of glass by multiplying their volume of concrete by 6 and subtracting their volume of concrete. May restart to find the volume of parallelepiped
A1:	$\frac{25}{3}$ only, ignore reference to units
(b)	Alternative
M1:	Notes (or works out using scalar products) that $-j+3k$ is a vector perpendicular to both OA = 2i and $OB = 3j+k$
A1:	Finds (using that OA and OB are perpendicular), area of $AOB = \sqrt{10}$
M1:	Solves $\mathbf{i} + \mathbf{j} + 2\mathbf{k} - p(-\mathbf{j} + 3\mathbf{k}) = \mu(2\mathbf{i}) + \lambda(3\mathbf{j} + \mathbf{k})$ to get the height of the tetrahedron
	$\left[(\mu = \lambda =) \ p = \frac{1}{2}, \ \text{so} \ h = \frac{1}{2} -\mathbf{j} + 3\mathbf{k} = \frac{1}{2}\sqrt{10} \right]$
M1:	Identifies the correct area as 5 times the volume of the tetrahedron (may be done as in main scheme via the difference)
A1:	$\frac{25}{3}$ only, ignore reference to units
(c) B1:	Any acceptable reason in context

		m	w.mymig
Question	Scheme	Marks	AOs
5(a)	$y^{2} = (8p)^{2} = 64p^{2}$ and $16x = 16(4p^{2}) = 64p^{2}$ $\Rightarrow P(4p^{2}, 8p)$ is a general point on C	B1	2.2a
		(1)	
(b)	$y^2 = 16x$ gives $a = 4$, or $2y\frac{dy}{dx} = 16$ so $\frac{dy}{dx} = \frac{8}{y}$	M1	2.2a
	$l: y - 8p = \left(\frac{8}{8p}\right)\left(x - 4p^2\right)$	M1	1.1b
	leading to $py = x + 4p^2 *$	A1*	2.1
		(3)	
(c)	$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ and <i>l</i> cuts <i>x</i> -axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x =$	M1	2.1
	x = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \frac{1}{2}(99)(12) - \int_0^9 4x^{\frac{1}{2}} dx$	M1	2.1
	$\frac{1}{1}$ $4r^{\frac{3}{2}}$ $8^{\frac{3}{2}}$	M1	1.1b
	$\int 4x^2 dx = \frac{4x}{\left(\frac{3}{2}\right)} (+c) \text{ or } \frac{6}{3}x^2 (+c)$	A1	1.1b
	Area(R) = $\frac{1}{2}(18)(12) - \frac{8}{3}\left(9^{\frac{3}{2}} - 0\right) = 108 - 72 = 36 *$	A1*	1.1b
		(8)	

	m	m.n.
		Jma
stion Scheme	Marks	AOs
5(c) Alternative 1		
$B\left(-4,\frac{10}{3}\right)$ into $l \implies \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
$p = \frac{3}{2}$ into <i>l</i> gives $\frac{3}{2}y = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x = \dots$	M1	2.1
$x = \frac{3}{2}y - 9$	Al	1.1b
$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \int_{0}^{12} \left(\frac{1}{16}y^{2} - \left(\frac{3}{2}y - 9\right)\right) dy$	M1	2.1
$\int \left(\frac{1}{2}v^2 - \frac{3}{2}v + 9\right) dv = \frac{1}{2}v^3 - \frac{3}{2}v^2 + 9v (+c)$	M1	1.1b
$\int (16^{y} 2^{y+y})^{4y-48^{y}} 4^{y+19y} (10^{y})^{4y-48^{y}}$	Al	1.1b
Area(R) = $\left(\frac{1}{48}(12)^3 - \frac{3}{4}(12)^2 + 9(12)\right) - (0)$ = 26 - 108 + 108 = 26 *	A1*	1.1b
- 30 - 108 + 108 - 30	(8)	
5(c) Alternative 2	(0)	
$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
$p = \frac{3}{2}$ and <i>l</i> cuts px-axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x =$	M1	2.1
x = -9	Al	1.1b
$p = \frac{3}{2} \Rightarrow P(9, 12) \text{ and } x = 0 \text{ in } l : y = \frac{2}{3}x + 6 \text{ gives } y = 6$ $\Rightarrow \operatorname{Area}(R) = \frac{1}{2}(9)(6) + \int_{-\infty}^{9} \left[\left(\frac{2}{3}x + 6 \right) - \left(4x^{\frac{1}{2}} \right) \right] dx$	M1	2.1
$\int (2 + 1)^{\frac{1}{2}} = \frac{1}{2} + $	M1	1.1b
$\left \frac{1}{2}x + 6 - 4x^2 \right dx = \frac{1}{2}x^2 + 6x - \frac{1}{2}x^2 (+c)$		1 11
$\int (5) 5 5$	A1	1.10
$J(3) = 27 + \left(\left(\frac{1}{3}(9)^2 + 6(9) - \frac{8}{3}(9^{\frac{3}{2}}) \right) - (0) \right)$	A1 A1*	1.1b
Area(R) = 27 + $\left(\left(\frac{1}{3}(9)^2 + 6(9) - \frac{8}{3}(9^{\frac{3}{2}})\right) - (0)\right)$ = 27 + (27 + 54 - 72) = 27 + 9 = 36 *	A1 A1*	1.10 1.1b

www.mymathscloud.com **Question 5 notes: (a)** Substitutes $y_p = 8p$ into y^2 to obtain $64p^2$ and substitutes $x_p = 4p^2$ into 16x to **B1**: obtain $64 p^2$ and concludes that P lies on C **(b) M1**: Uses the given formula to deduce the derivative. Alternatively, may differentiate using chain rule to deduce it Applies $y - 8p = m(x - 4p^2)$, with their tangent gradient m, which is in terms of p. M1: Accept use of $8p = m(4p^2) + c$ with a clear attempt to find c Obtains $py = x + 4p^2$ by cso A1*: (c) Substitutes their x = "-a" and $y = \frac{10}{3}$ into l M1: M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$ Substitutes their p (which must be positive) and y = 0 into l and solves to give M1: *x* = A1: Finds that *l* cuts the *x*-axis at x = -9**M1**: Fully correct method for finding the area of Ri.e. $\frac{1}{2}$ (their $x_p - "-9"$)(their y_p) $- \int_{a}^{\text{their } x_p} 4x^{\frac{1}{2}} dx$ Integrates $\pm \lambda x^{\frac{1}{2}}$ to give $\pm \mu x^{\frac{3}{2}}$, where $\lambda, \mu \neq 0$ M1: Integrates $4x^{\frac{1}{2}}$ to give $\frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified A1: Fully correct proof leading to a correct answer of 36 A1*: Alternative 1 (c) **M1:** Substitutes their x = "-a" and $y = \frac{10}{2}$ into *l* M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$ Substitutes their p (which must be positive) into l and rearranges to give $x = \dots$ M1: Finds *l* as $x = \frac{3}{2}y - 9$ A1: Fully correct method for finding the area of R **M1:** i.e. $\int_{-\infty}^{1} \frac{1}{16} y^2 - \text{their}\left(\frac{3}{2}y - 9\right) dy$ **M1:** Integrates $\pm \lambda y^2 \pm \mu y \pm v$ to give $\pm \alpha y^3 \pm \beta y^2 \pm v y$, where $\lambda, \mu, v, \alpha, \beta \neq 0$ A1: Integrates $\frac{1}{16}y^2 - \left(\frac{3}{2}y - 9\right)$ to give $\frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y$, simplified or un-simplified A1*: Fully correct proof leading to a correct answer of 36

www.mymathscloud.com **Question 5 notes continued:** Alternative 2 (c) Substitutes their x = "-a" and $y = \frac{10}{3}$ into l M1: M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$ M1: Substitutes their p (which must be positive) and y = 0 into l and solves to give $x = \dots$ A1: Finds that *l* cuts the *x*-axis at x = -9M1: Fully correct method for finding the area of Ri.e. $\frac{1}{2}$ (their 9)(their 6) + $\int_{0}^{\text{their } x_p} \left(\text{their } \left(\frac{2}{3}x + 6 \right) - \left(4x^{\frac{1}{2}} \right) \right) dy$ Integrates $\pm \lambda x \pm \mu \pm v x^{\frac{1}{2}}$ to give $\pm \alpha x^2 \pm \mu x \pm \beta x^{\frac{3}{2}}$, where $\lambda, \mu, v, \alpha, \beta \neq 0$ M1: Integrates $\left(\frac{2}{3}x+6\right) - \left(4x^{\frac{1}{2}}\right)$ to give $\frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified A1: A1*: Fully correct proof leading to a correct answer of 36

urther Pu	re Mathematics 2 Mark Scheme (Section B)		ww.my.
Question	Scheme	Marks	AOs
6(a)	Consider det $\begin{pmatrix} 3-\lambda & 1\\ 6 & 4-\lambda \end{pmatrix} = (3-\lambda)(4-\lambda) - 6$	M1	1.1b
	So $\lambda^2 - 7\lambda + 6 = 0$ is characteristic equation	Al	1.1b
		(2)	
	So $A^2 = 7A - 6I$	B1ft	1.1b
(b)	Multiplies both sides of their equation by \mathbf{A} so $\mathbf{A}^3 = 7\mathbf{A}^2 - 6\mathbf{A}$	M1	3.1a
	Uses $A^3 = 7(7A - 6I) - 6A$ So $A^3 = 43A - 42I*$	A1*cso	1.1b
		(3)	
		(5 n	narks)
:es: : Com Obta	plete method to find characteristic equation ains a correct three term quadratic equation – may use variable other	than λ	
ft: Uses with o 1: Mul	Cayley Hamilton Theorem to produce equation replacing λ with A constant multiple of identity matrix, I tiplies equation by A	and constan	t term

Further Pure Mathematics 2 Mark Scheme (Section B)

		mm. mr			
Question	Scheme	Marks	AOs		
7(i)	Adding digits $8 + 1 + 8 + 4 = 21$ which is divisible by 3 (or continues to add digits giving $2+1=3$ which is divisible by 3) so concludes that 8184 is divisible by 3	M1	1.1b		
	8184 is even, so is divisible by 2 and as divisible by both 3 and 2, so it is divisible by 6	A1	1.1b		
		(2)			
(ii)	Starts Euclidean algorithm $31=27 \times 1+4$ and $27=4 \times 6+3$	M1	1.2		
	$4 = 3 \times 1 + 1$ (so hcf = 1)	A1	1.1b		
	So $1 = 4 - 3 \times 1 = 4 - (27 - 4 \times 6) \times 1 = 4 \times 7 - 27 \times 1$	M1	1.1b		
	$(31-27 \times 1) \times 7 - 27 \times 1 = 31 \times 7 - 27 \times 8$ a = -8 and $b = 7$	Alcso	1.1b		
		(4)			
		(6 n	narks)		

Notes:

(i)

- M1: Explains divisibility by 3 rule in context of this number by adding digits
- A1: Explains divisibility by 2, giving last digit even as reason and makes conclusion that number is divisible by 6

(ii)

- M1: Uses Euclidean algorithm showing two stages
- A1: Completes the algorithm. Does not need to state that hcf = 1
- M1: Starts reversal process, doing two stages and simplifying
- A1cso: Correct completion, giving clear answer following complete solution

			WWW. TRYMathsch
Questio	n Scheme	Marks	AOs
8(a)	$(x-9)^{2} + (y+12)^{2} = 4[x^{2} + y^{2}]$	M1	2.1
	$3x^2 + 3y^2 + 18x - 24y - 225 = 0$ which is the equation of a circle	A1*	2.2a
	As $x^{2} + y^{2} + 6x - 8y - 75 = 0$ so $(x + 3)^{2} + (y - 4)^{2} = 10^{2}$	M1	1.1b
	Giving centre at $(-3, 4)$ and radius = 10	A1ft	1.1b
		(4)	
(b)		M1	1.1b
	-3+4i	A1	1.1b
		(2)	
(c)	Values range from their $-3 - 10$ to their $-3 + 10$	M1	3.1a
	So $-13 \le \operatorname{Re}(w) \le 7$	A1ft	1.1b
		(2)	
Neter		(8 n	narks)
(a) M1: C A1: E M1: C A1ft: B	btains an equation in terms of x and y using the given information xpands and simplifies the algebra, collecting terms and obtains a circle orrectly, deducing that this is a circle ompletes the square for their equation to find centre and radius oth correct	equation	
(b) M1: D A1: C	raws a circle with centre and radius as given from their equation orrect circle drawn, as above, with centre at $-3 + 4i$ and passing throug undrants	h all four	
(c) M1: A c: A1ft: C	ttempts to find where a line parallel to the real axis, passing through the rcle, meets the circle so using " their $-3 - 10$ " to "their $-3 + 10$ " orrectly obtains the correct answer for their centre and radius	centre of t	ihe

	mm							mm.n.		
										.J.n.
Question					Schen	ne			Marks	AOs
9(a)(i)										
	*	0	2	3	4	5	6			
	0	0	2	3	4	5	6			
	2	2	0			4			M1	1 1h
	3	3					5		1011	1.10
	4	4						_		
	5	5	4					_		
	6	6		5						
			2	2	4	5	(
		0	2	3	4	5	0	-		
	2	2	0	6	5	<u> </u>	3	-	M1	1 1h
	3	3	6	4	2	0	5	-	A1	1.1b
	4	4	5	2	6	3	0	-		
	5	5	4	0	3	6	2	1		
	6	6	3	5	0	2	4			
(ii)	Identity	is zer	o and th	ere is c	losure	as show	n above		M1	2.1
	3 and 5 0 is iden	are in ntity so	verses, 4 o is self-	4 and 6 -inverse	are inv	verses, 2	2 is self-ir	iverse,	M1	2.5
	Asso	ociativ	e law m	ay be a	ssumed	l so S fo	orms a gro	oup	A1	1.1b
									(6)	
(b)	4*4*4 =	= 4* (4	* 4) =	4*60	r 4*4*4	. = (4* .	4) * 4 = 6	* 4	M1	2.1
	= 0 (the	identi	ity) so 4	has or	der 3				Al	2.2a
									(2)	
(c)	3 and 5	each l	nave ord	ler 6 so	either	generat	es the gro	oup	M1	3.1a
	Either	$3^1 = 3$,	$3^2 = 4$,	$3^3 = 2$,	$3^4 = 6$,	$3^5 = 5$,	$3^6 = 0$		A 1 A 1	1.1b
	Or $5^1 =$	$= 5, 5^2$	$= 6, 5^3$	$= 2, 5^4$	$=4, 5^5$	$=3, 5^{6}$	= 0		AI, AI	1.1b
									(3)	
									(11 ו	narks)

	4
	m
Quest	tion 9 notes:
(a)(i)	
M1:	Begins completing the table – obtaining correct first row and first column and using
	symmetry
M1:	Mostly correct – three rows or three columns correct (so demonstrates understanding of
	using *
A1:	Completely correct
(a)(ii)	
M1:	States closure and identifies the identity as zero
M1:	Finds inverses for each element
A1:	States that associative law is satisfied and so all axioms satisfied and S is a group
(h)	
(b) M1:	Clearly begins process to find 4*4*4 reaching 6*4 or 4*6 with clear explanation
A1:	Gives answer as zero states identity and deduces that order is 3
(c)	
M1:	Finds either 3 or 5 or both
A1:	Expresses four of the six terms as powers of either generator correctly (may omit identity
. 1	and generator itself)
AI:	Expresses all six terms correctly in terms of either 3 or 5 (Do not need to give both)

			www.myi	
Questio	on Scheme	Marks	AOs	
10(a)	P_{n-1} is the population at the end of year $n-1$ and this is increased by 10% by the end of year n , so is multiplied by $110\% = 1.1$ to give $1.1 \times P_{n-1}$ as new population by natural causes	B1	3.3	
	<i>Q</i> is subtracted from $1.1 \times P_{n-1}$ as <i>Q</i> is the number of deer removed from the estate	B1	3.4	
	So $P_n = 1.1P_{n-1} - Q$, $P_0 = 5000$ as population at start is 5000 and $n \in Z^+$	B1	1.1b	
		(3)		
(b)	Let $n = 0$, then $P_0 = (5000 - 10Q)(1.1)^0 + 10Q = 5000$ so result is true when $n = 0$	B1	2.1	
	Assume result is true for $n = k$, $P_k = (1.1)^k (5000 - 10Q) + 10Q$, then as $P_{k+1} = 1.1P_k - Q$, so $P_{k+1} =$	M1	2.4	
	$P_{k+1} = 1.1 \times 1.1^{k} (5000 - 10Q) + 1.1 \times 10Q - Q$	A1	1.1b	
	So $P_{k+1} = (5000 - 10Q)(1.1)^{k+1} + 10Q$,	A1	1.1b	
	Implies result holds for $n = k + 1$ and so by induction $P_n = (5000 - 10Q)(1.1)^n + 10Q$, is true for all integer <i>n</i>	B1	2.2a	
		(5)		
(c)	For $Q < 500$ the population of deer will grow, for $Q > 500$ the population of deer will fall	B1	3.4	
	For $Q = 500$ the population of deer remains steady at 5000,	B1	3.4	
		(2)		
		(10 r	narks)	
Notes:				
(a) B1: N B1: N B1: N	Weed to see 10% increase linked to multiplication by scale factor 1.1 Needs to explain that subtraction of Q indicates the removal of Q deer from Needs complete explanation with mention of $P_n = 1.1P_{n-1} - Q$, $P_0 = 50$	m populat 00 being	ion the	
i	nitial number of deer			
(b) B1: E M1: A A1: C B1: C	Begins proof by induction by considering $n = 0$ Assumes result is true for $n = k$ and uses iterative formula to consider $n = k + 1$ Correct algebraic statement Correct statement for $k + 1$ in required form Completes the inductive argument			
(c) B1: (B1: (Consideration of both possible ranges of values for Q as listed in the scheme Gives the condition for the steady state 			